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Introduction

SglPPow is a package which extends the Small Groups Library. Currently the Small Groups Library gives access to
the following groups:

(1)

Those of order at most 2000 except 1024 (423,164,062 groups);
(2)

Those of cubefree order at most 50,000 (395,703 groups);
(3)

Those of order p’ for the primes p = 3, 5,7, 11 (907,489 groups);
(4)

Those of order p” for n < 6 and all primes p;
(5)

Those of order pq" where ¢" divides 28, 36, 55 or 74 and p is an arbitrary prime not equal to g;
(6)

Those of squarefree order;
(7)

Those whose order factorizes into at most 3 primes.

This package gives access to the groups of order p’ for primes p > 11, and to the groups of order 3%.

To access the groups of order p’ for primes p > 11 you need the packages LiePRing (by Michael Vaughan-Lee and
Bettina Eick) and LieRing (by Willem de Graaf and Serena Cicalo).

The groups of order 3® have been determined by Michael Vaughan-Lee. The groups of order p’ for primes p > 11 are
available via the database of the nilpotent Lie rings of order p* for k < 7 and primes p > 3 in the LiePRing package.
These groups are obtained from the Lie rings using the implementation of the Baker-Campbell-Hausdorff formula in
the LieRing package.

Acknowledgements: The authors thank Max Horn for help with general framework of GAP programs to extend the
Small Groups Library.
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Accessing the data

When this package is loaded, then the groups of order 3% and p’ for primes p > 11 are additionally available via the
SmallGroups library. As a result, all groups of order p” withp =2 andn < 9 and p = 3 and n < 8 and p an arbitrary
prime and n < 7 are then available via the small groups library. The corresponding information can be obtained via

SmallGroup(size, number)
NumberSmallGroups (size)

SmallGroupsInformation(size)

See Section 50.7 in the GAP manual for background on these functions. Note that there is no IdGroup function
available for this extension of the small groups library.

WARNING: The user should be aware that there are there are 1,396,077 groups of order 3%, 1,600,573 groups of
order 137, and 5,546,909 groups of order 177. For general p the number of groups of order p’ is a PORC polynomial
in p with leading term 3p>. Furthermore, as the prime p increases, the time taken to generate a complete list of the
groups of order p’ grows rapidly. Experimentally the time seems to be proportional to p®2. For p = 13 it takes several
hours to generate the complete list. For primes p < 11 the groups are precomputed, and their SmallGroup codes are
stored in the SmallGroups database. For primes p > 11 the Lie rings have to be generated from 4773 parametrized
presentations in the LiePRing database, and then converted into groups using the Baker-Campbell-Hausdorff formula.
A complete list of power commutator presentations for the groups of order 137 takes over 11 gb of memory.

gap> NumberSmallGroups(378);

1396077

gap> SmallGroup(3~8, 1000000);

<pc group of size 6561 with 8 generators>
gap> NumberSmallGroups(17°7);

5546909
gap> SmallGroup(17°7, 5000);
constructing a batch of 1156 groups ... this may take a while

<pc group of size 410338673 with 7 generators>
gap> NumberSmallGroups(10177);
32826263845



The organization
of the data

We include some brief comments on the organization of the data. As a preliminary step we briefly recall the p-group
generation algorithm.

3.1 The p-group generation algorithm

The p-group generation algorithm was developed and implemented by Eamonn O’Brien, and we refer the reader to
[O’B90] for a detailed description of the algorithm.

For a brief overview, let P be a p-group. The algorithm uses the lower p-central series, defined recursively by 4 (P) =
P and A4;11(P) = [A(P), P]A;(P)? for i > 1. The p-class of P is the length of this series. Each p-group P, apart from
the elementary abelian ones, is an immediate descendant of the quotient P/R where R is the last non-trivial term of
the lower p-central series of P.

Thus all the groups with order 38, except the elementary abelian one, are immediate descendants of groups with order
3¥ for some k smaller than 8. All of the immediate descendants of a p-group Q are quotients of a certain extension of Q;
the isomorphism problem for these descendants is equivalent to the problem of determining orbits of certain subgroups
of this extension under an action of the automorphism group of Q. Not all p-groups have immediate descendants, those
that do are called capable, and those which do not are called terminal.

O’Brien and Vaughan-Lee’s classification of the groups of order p’ in [OVLO05] is based on a classification of the
nilpotent Lie rings of order p’, and the groups of order p’ are obtained from the Lie rings using the Baker-Campbell-
Hausdorff formula. O’Brien and Vaughan-Lee classified the nilpotent Lie rings of order p” using the nilpotent Lie ring
generation algorithm, which is a direct analogue of the p-group generation algorithm.

Thus the databases of nilpotent Lie rings of order p” and of the groups of order 3% are organized according to these
algorithms: the immediate descendants of order p’ of each nilpotent Lie ring of order less than p’ are grouped together
in the database of nilpotent Lie rings, and the immediate descendants of order 3% of each group of order less than 33
are grouped together in the database of groups of order 3.

3.2 The groups of order 6561

The database of groups of order 3? is organized according to rank and p-class. Here rank is the rank of the Frattini
quotient, i.e. the size of a minimal generating set, and p-class is as defined in the previous section. The following
table gives the number of groups of order 3% of each rank and p-class, with the (i, j) entry corresponding to rank i and
p-class j.

1 2 3 4 5 6 7 8
1 0 O 0 0 0 0 0 1
2 0 0 58 486 1343 330 9 O
3 0 4 216747 40521 2163 24 0 0
4 0 23361 494666 22343 51 0 0 0
5 0 578478 14796 80 0 0 0 O
6 0 566 39 0 0 0 0 O
7 0 10 0 0 0 0 0 O
8 1 0 0 0 0 0 0 0
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In the list of all groups of order 3® the first group is the cyclic group, then the 2-generator groups follow in order of
increasing p-class and so on. The above table can thus be used to find the range of numbers of groups with a given
rank and p-class.

As mentioned above, the database is organized according to the p-group generation algorithm. For example, the 9
groups of rank 2, p-class 7, and order 3* are numbered from 2219-2227. The groups numbered 2219 and 2220 are
descendants of SmallGroup(3’,384), and the groups numbered 2221-2227 are descendants of SmallGroup(3’, 386).
Similarly, the 24 groups of rank 3, p-class 6, and order 3% are numbered from 261663-261686. The first four of these
groups are descendants of SmallGroup(3, 5841), the next 17 are descendants of SmallGroup(3’, 5844), and the last 4
are descendants of SmallGroup(3’, 5849).

3.3 The groups with order the seventh power of a prime

The groups of order p’ for prime p > 11 are obtained from the LiePRing database of nilpotent Lie rings of order
p’ using Willem de Graaf’s implementation of the Baker-Campbell-Hausdorff formula. The LiePRing database is
organized according to the output from the nilpotent Lie ring generation algorithm. For any given p the first Lie ring
in the database is the cyclic Lie ring of order p’. Next come the two generator Lie rings, then the three generator Lie
rings, and so on, ending with the six generator Lie rings, and then finally the elementary abelian Lie ring of rank 7.
The first four of the two generator nilpotent Lie rings of order p’ are immediate descendants of the Lie ring

(a,b|pb, class3)
of order p*. The next p? + 8p + 25 are immediate descendants of the Lie ring
(a,b|baa, bab,pba, class3)
of order p°, and the next p + 6 + (p* + 3p + 10)ged(p — 1,3) are immediate descendants of
(a, b | babb, pa, pb, class4)-

The nine rank 6 Lie rings in the database are the rank 6, p-class 2 Lie rings. These are the immediate descendants of
the elementary abelian Lie ring of rank 6.

There is a complete list of presentations for the nilpotent Lie rings of order p* for k < 7 valid for all p > 3 in the
document p567.pdf supplied with the documentation for the LiePRing package. The presentations are grouped as
described above, with each group of presentations giving the immediate descendants of a Lie ring of smaller order.

In a few cases the descendants of a parametrized family of Lie rings are grouped together. For example there is a
family of p(p — 1) distinct Lie rings with presentations of the form

{a,b,c|ca — baa, cb, pa — Abaa — ubab, pb + vbaa + Ebab, pc, class3)

with A, i, v, & # 0. Most of these algebras are terminal, but %p — % + % ged(p — 1,4) of them are capable, and they
have a total of %p3 +2p* —5p+ % + 5 ged(p — 1,4) descendants of order p’ and p-class 4. These descendants have
presentations

(a,b,c|ca— baa, cb, pa — baa — pbab — ybaaa, pb + vbaa + bab — zbaaa, pc — thaaa, class4),

{a,b,c|ca — baa, cb, pa — baa — ubab — ybaaa, pb + vbaa + Uvbab — zbaaa, pc — thaaa, class4)

for various choices of the parameters UL, V,y, z, t. For any given value of p the %p3 +2p* —5p+ % + 5 ged(p —1,4)
distinct Lie algebras with presentations of this form are grouped together, with consecutive numbering.
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There is no easy way to determine the numbering of (say) the three generator Lie rings of p-class 4 since the numbers
depend on p in a very complicated way, and generally there is no easy efficient way of searching the database for
a group with particular properties. In view of the numbers of groups of order p’ and the time needed to generate
a complete list, this means that the database will be of limited use for most people. A user who wants to access
a particular batch of descendants as described in p567.pdf is advised to use the LiePRing package directly, as this
package also has an option to obtain the corresponding groups via Willem de Graaf’s implementation of the Baker-
Campbell-Hausdorff formula. On the other hand, there are only

2p° + 13p® + 64p + 145 + (p? + 10p + 56)ged(p — 1,3) + (4p + 28)ged(p — 1,4)
+(2p+12)ged(p — 1,5) + ged(p — 1,7) + 4gcd(p — 1,8) + ged(p — 1,9)

two generator groups of order p’ for p > 5 and a complete list of them can be generated quite quickly for moderate
values of p. The table below gives the number of d generator groups of order p’ valid for all p > 5, and the user can
use the table to compute the range of numbers needed to access the d generator groups of order p’ for any given p.

rank 1
1
rank 2
2p° + 13p? + 64p + 145 + (p> + 10p + 56)gcd(p — 1,3) + (4p + 28)gcd(p — 1,4)
+(2p +12)ged(p — 1,5) + ged(p — 1,7) + 4ged(p — 1,8) + ged(p — 1,9)
rank 3
2p° + 9p* +29p® + 99p? + 380p + 1100 + (3p* + 28p + 189)gcd(p — 1,3)
+(p* + 13p + 84)gcd(p — 1,4) + (p + 17)ged(p — 1,5) + ged(p — 1,8) + 3ged(p — 1,7)
rank 4
P>+ 3p* +13p> + 57p* + 248p + 1044 + (6p + 46)gcd(p — 1, 3)
+(2p +23)ged(p — 1,4) +2ged(p — 1,5)
rank 5
P>+ 15p + 155
rank 6
9
rank 7
1

The total number of groups of order p” for all p > 5 is given by

3p° + 12p* + 44p* + 170p* + 707p + 2455
+(4p® +44p 4+ 291)ged(p — 1,3) + (p* + 19p + 135)ged(p — 1,4)
+(3p +31)ged(p — 1,5) +4ged(p — 1,7) + 5gcd(p — 1,8) + ged(p — 1,9)-



Installing and
loading the package

The package can be downloaded from
https://gap-packages.github.io/sglppow/

Then tar -zxvf slgppow.tar produces a directory sglppow. This should be moved into the pkg directory of a
GAP installation.

The package is set up so that after loading it into GAP with LoadPackage ("sglppow") the full functionality of the
package is available.
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