
utils
Utility functions in GAP

0.76

6 August 2022

Thomas Breuer

Sebastian Gutsche

Max Horn

Alexander Hulpke

Stefan Kohl

Frank Lübeck

Chris Wensley

utils 2

Thomas Breuer
Email: sam@math.rwth-aachen.de
Homepage: https://www.math.rwth-aachen.de/~Thomas.Breuer

Sebastian Gutsche
Email: gutsche@mathematik.uni-seigen.de
Homepage: https://sebasguts.github.io/

Max Horn
Email: horn@mathematik.uni-kl.de
Homepage: https://github.com/mhorn

Alexander Hulpke
Email: hulpke@math.colostate.edu
Homepage: https://www.math.colostate.edu/~hulpke

Stefan Kohl
Email: stefan@mcs.st-and.ac.uk
Homepage: https://www.gap-system.org/DevelopersPages/StefanKohl/

Frank Lübeck
Email: Frank.Luebeck@Math.RWTH-Aachen.De
Homepage: https://www.math.rwth-aachen.de/~Frank.Luebeck

Chris Wensley
Email: c.d.wensley@bangor.ac.uk
Homepage: https://github.com/cdwensley

mailto://sam@math.rwth-aachen.de
https://www.math.rwth-aachen.de/~Thomas.Breuer
mailto://gutsche@mathematik.uni-seigen.de
https://sebasguts.github.io/
mailto://horn@mathematik.uni-kl.de
https://github.com/mhorn
mailto://hulpke@math.colostate.edu
https://www.math.colostate.edu/~hulpke
mailto://stefan@mcs.st-and.ac.uk
https://www.gap-system.org/DevelopersPages/StefanKohl/
mailto://Frank.Luebeck@Math.RWTH-Aachen.De
https://www.math.rwth-aachen.de/~Frank.Luebeck
mailto://c.d.wensley@bangor.ac.uk
https://github.com/cdwensley

utils 2

Abstract
The Utils package provides a space for utility functions in a variety of GAP packages to be collected together
into a single package. In this way it is hoped that they will become more visible to package authors.

Any package author who transfers a function to Utils will become an author of Utils.
If deemed appropriate, functions may also be transferred from the main library.
Bug reports, suggestions and comments are, of course, welcome. Please contact the

last author at c.d.wensley@bangor.ac.uk or submit an issue at the GitHub repository
https://github.com/gap-packages/utils/issues/.

Copyright
© 2015-2022, The GAP Group.

The Utils package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

Acknowledgements
This documentation was prepared using the GAPDoc [LN17] and AutoDoc [GH16] packages.

The procedure used to produce new releases uses the package GitHubPagesForGAP [Hor17] and the
package ReleaseTools.

mailto://c.d.wensley@bangor.ac.uk
https://github.com/gap-packages/utils/issues/

Contents

1 Introduction 5
1.1 Information for package authors . 6

2 Printing Lists and Iterators 7
2.1 Printing selected items . 7

3 Lists, Sets and Strings 9
3.1 Functions for lists . 9
3.2 Distinct and Common Representatives . 11
3.3 Functions for strings . 12

4 Number-theoretic functions 13
4.1 Functions for integers . 13

5 Groups and homomorphisms 16
5.1 Functions for groups . 16
5.2 Left Cosets for Groups . 18
5.3 Functions for group homomorphisms . 19

6 Iterators 24
6.1 Some iterators for groups and their isomorphisms 24
6.2 Operations on iterators . 25

7 Records 27
7.1 Functions for records . 27

8 Various other functions 28
8.1 File operations . 28
8.2 LATEX strings . 28
8.3 Conversion to Magma string . 29

9 Obsolete functions 31
9.1 Operations from AutoDoc . 31
9.2 Functions for printing . 31
9.3 Other obsolete functions . 32

10 The transfer procedure 33

3

utils 4

References 35

Index 36

Chapter 1

Introduction

The Utils package provides a space for utility functions from a variety of GAP packages to be collected
together into a single package. In this way it is hoped that they will become more visible to other
package authors. This package was first distributed as part of the GAP 4.8.2 distribution.

The package is loaded with the command
Example

gap> LoadPackage("utils");

Functions have been transferred from the following packages:

• Conversion of a GAP group to a Magma output string, taken from various sources including
other.gi in the main library.

Transfer is complete (for now) for functions from the following packages:

• AutoDoc [GH16] (with function names changed);

• ResClasses [Koh17b];

• RCWA [Koh17a];

• XMod [WAOU17].

The package may be obtained either as a compressed .tar file or as a .zip file,
utils-version_number.tar.gz, by ftp from one of the following sites:

• the Utils GitHub release site: https://gap-packages.github.io/utils/.

• any GAP archive, e.g. https://www.gap-system.org/Packages/packages.html;

The package also has a GitHub repository at: https://github.com/gap-packages/utils.
Once the package is loaded, the manual doc/manual.pdf can be found in the documentation

folder. The html versions, with or without MathJax, may be rebuilt as follows:
Example

gap> ReadPackage("utils", "makedoc.g");

5

https://gap-packages.github.io/utils/
https://www.gap-system.org/Packages/packages.html
https://github.com/gap-packages/utils

utils 6

It is possible to check that the package has been installed correctly by running the test files (which
terminates the GAP session):

Example

gap> ReadPackage("utils", "tst/testall.g");
Architecture:
testing:
. . .
#I No errors detected while testing

Note that functions listed in this manual that are currently in the process of being transferred are
only read from the source package Home (say), and so can only be used if Home has already been
loaded. There are no such functions in transition at present.

1.1 Information for package authors

A function (or collection of functions) is suitable for transfer from a package Home to Utils if the
following conditions are satisfied.

• The function is sufficiently non-specialised so that it might be of use to other authors.

• The function does not depend on the remaining functions in Home

• The function does not do what can already be done with a GAP library function.

• Documentation of the function and test examples are available.

• When there is more than one active author of Home, they should all be aware (and content) that
the transfer is taking place.

Authors of packages may be reluctant to let go of their utility functions. The following principles
may help to reassure them. (Suggestions for more items here are welcome.)

• A function that has been transferred to Utils will not be changed without the approval of the
original author.

• The current package maintainer has every intention of continuing to maintain Utils. In the event
that this proves impossible, the GAP development team will surely find someone to take over.

• Function names will not be changed unless specifically requested by Home’s author(s) or unless
they have the form HOME_FunctionName.

• In order to speed up the transfer process, only functions from one package will be in transition
at any given time. Hopefully a week or two will suffice for most packages.

• Any package author who transfers a function to Utils will become an author of Utils. (In truth,
Utils does not have authors, just a large number of contributors.)

The process for transferring utility functions from Home to Utils is described in Chapter 10.

Chapter 2

Printing Lists and Iterators

2.1 Printing selected items

The functions described here print lists or objects with an iterator with one item per line, either the
whole list/iterator or certain subsets:

• by giving a list of positions of items to be printed, or

• by specifying a first item and then a regular step.

2.1.1 PrintSelection

. PrintSelection(obj, first, step[, last]) (function)

. PrintSelection(obj, list) (function)

This function, given three (or four) parameters, calls operations PrintSelectionFromList or
PrintSelectionFromIterator which prints the first item specified, and then the item at every step.
The fourth parameter is essential when the object being printed is infinite.

Alternatively, given two parameters, with the second parameter a list L of positive integers, only
the items at positions in L are printed.

Example

gap> L := List([1..20], n -> n^5);;
gap> PrintSelection(L, [18..20]);
18 : 1889568
19 : 2476099
20 : 3200000
gap> PrintSelection(L, 2, 9);
2 : 32
11 : 161051
20 : 3200000
gap> PrintSelection(L, 2, 3, 11);
2 : 32
5 : 3125
8 : 32768
11 : 161051
gap> s5 := SymmetricGroup(5);;

7

utils 8

gap> PrintSelection(s5, [30,31,100,101]);
30 : (1,5)(3,4)
31 : (1,5,2)
100 : (1,4,3)
101 : (1,4)(3,5)
gap> PrintSelection(s5, 1, 30);
1 : ()
31 : (1,5,2)
61 : (1,2,3)
91 : (1,3,5,2,4)
gap> PrintSelection(s5, 9, 11, 43);
9 : (2,5,3)
20 : (2,4)
31 : (1,5,2)
42 : (1,5,2,3,4)

Chapter 3

Lists, Sets and Strings

3.1 Functions for lists

3.1.1 DifferencesList

. DifferencesList(L) (function)

This function has been transferred from package ResClasses.
It takes a list L of length n and outputs the list of length n− 1 containing all the differences

L[i]−L[i−1].
Example

gap> List([1..12], n->n^3);
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728]
gap> DifferencesList(last);
[7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397]
gap> DifferencesList(last);
[12, 18, 24, 30, 36, 42, 48, 54, 60, 66]
gap> DifferencesList(last);
[6, 6, 6, 6, 6, 6, 6, 6, 6]

3.1.2 QuotientsList

. QuotientsList(L) (function)

. FloatQuotientsList(L) (function)

These functions have been transferred from package ResClasses.
They take a list L of length n and output the quotients L[i]/L[i−1] of consecutive entries in L. An

error is returned if an entry is zero.
Example

gap> List([0..10], n -> Factorial(n));
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
gap> QuotientsList(last);
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

9

utils 10

gap> L := [1, 3, 5, -1, -3, -5];;
gap> QuotientsList(L);
[3, 5/3, -1/5, 3, 5/3]
gap> FloatQuotientsList(L);
[3., 1.66667, -0.2, 3., 1.66667]
gap> QuotientsList([2, 1, 0, -1, -2]);
[1/2, 0, fail, 2]
gap> FloatQuotientsList([1..10]);
[2., 1.5, 1.33333, 1.25, 1.2, 1.16667, 1.14286, 1.125, 1.11111]
gap> Product(last);
10.

3.1.3 SearchCycle

. SearchCycle(L) (operation)

This function has been transferred from package RCWA.
SearchCycle is a tool to find likely cycles in lists. What, precisely, a cycle is, is deliberately

fuzzy here, and may possibly even change. The idea is that the beginning of the list may be anything,
following that the same pattern needs to be repeated several times in order to be recognized as a cycle.

Example

gap> L := [1..20];; L[1]:=13;;
gap> for i in [1..19] do
> if IsOddInt(L[i]) then L[i+1]:=3*L[i]+1; else L[i+1]:=L[i]/2; fi;
> od;
gap> L;
[13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4]
gap> SearchCycle(L);
[1, 4, 2]
gap> n := 1;; L := [n];;
gap> for i in [1..100] do n:=(n^2+1) mod 1093; Add(L,n); od;
gap> L;
[1, 2, 5, 26, 677, 363, 610, 481, 739, 715, 795, 272, 754, 157, 604, 848,

1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 271,
211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 271, 211, 802, 521,
378, 795, 272, 754, 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272,
754, 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604,
848, 1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004,
271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004]

gap> C := SearchCycle(L);
[157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 754]
gap> P := Positions(L, 157);
[14, 26, 38, 50, 62, 74, 86, 98]
gap> Length(C); DifferencesList(P);
12
[12, 12, 12, 12, 12, 12, 12]

utils 11

3.1.4 RandomCombination

. RandomCombination(S, k) (operation)

This function has been transferred from package ResClasses.
It returns a random unordered k-tuple of distinct elements of a set S.

Example

gap> ## "6 aus 49" is a common lottery in Germany
gap> RandomCombination([1..49], 6);
[2, 16, 24, 26, 37, 47]

3.2 Distinct and Common Representatives

3.2.1 DistinctRepresentatives

. DistinctRepresentatives(list) (operation)

. CommonRepresentatives(list) (operation)

. CommonTransversal(grp, subgrp) (operation)

. IsCommonTransversal(grp, subgrp, list) (operation)

These operations have been transferred from package XMod.
They deal with lists of subsets of [1 . . .n] and construct systems of distinct and common represen-

tatives using simple, non-recursive, combinatorial algorithms.
When L is a set of n subsets of [1 . . .n] and the Hall condition is satisfied (the union of any k subsets

has at least k elements), a set of DistinctRepresentatives exists.
When J,K are both lists of n sets, the operation CommonRepresentatives returns two lists: the

set of representatives, and a permutation of the subsets of the second list.
The operation CommonTransversal may be used to provide a common transversal for the sets of

left and right cosets of a subgroup H of a group G, although a greedy algorithm is usually quicker.
Example

gap> J := [[1,2,3], [3,4], [3,4], [1,2,4]];;
gap> DistinctRepresentatives(J);
[1, 3, 4, 2]
gap> K := [[3,4], [1,2], [2,3], [2,3,4]];;
gap> CommonRepresentatives(J, K);
[[3, 3, 3, 1], [1, 3, 4, 2]]
gap> d16 := DihedralGroup(IsPermGroup, 16);
Group([(1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6)])
gap> SetName(d16, "d16");
gap> c4 := Subgroup(d16, [d16.1^2]);
Group([(1,3,5,7)(2,4,6,8)])
gap> SetName(c4, "c4");
gap> RightCosets(d16, c4);
[RightCoset(c4,()), RightCoset(c4,(2,8)(3,7)(4,6)), RightCoset(c4,(1,8,7,6,5,

4,3,2)), RightCoset(c4,(1,8)(2,7)(3,6)(4,5))]
gap> trans := CommonTransversal(d16, c4);

utils 12

[(), (2,8)(3,7)(4,6), (1,2,3,4,5,6,7,8), (1,2)(3,8)(4,7)(5,6)]
gap> IsCommonTransversal(d16, c4, trans);
true

3.3 Functions for strings

3.3.1 BlankFreeString

. BlankFreeString(obj) (function)

This function has been transferred from package ResClasses.
The result of BlankFreeString(obj); is a composite of the functions String(obj) and

RemoveCharacters(obj, " ");.
Example

gap> gens := GeneratorsOfGroup(DihedralGroup(12));
[f1, f2, f3]
gap> String(gens);
"[f1, f2, f3]"
gap> BlankFreeString(gens);
"[f1,f2,f3]"

Chapter 4

Number-theoretic functions

4.1 Functions for integers

4.1.1 AllSmoothIntegers

. AllSmoothIntegers(maxp, maxn) (function)

. AllSmoothIntegers(L, maxp) (function)

This function has been transferred from package RCWA.
The function AllSmoothIntegers(maxp,maxn) returns the list of all positive integers less than

or equal to maxn whose prime factors are all in the list L = {p | p 6 maxp, p prime}.
In the alternative form, when L is a list of primes, the function returns the list of all positive integers

whose prime factors lie in L.
Example

gap> AllSmoothIntegers(3, 1000);
[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96,

108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576,
648, 729, 768, 864, 972]

gap> AllSmoothIntegers([5,11,17], 1000);
[1, 5, 11, 17, 25, 55, 85, 121, 125, 187, 275, 289, 425, 605, 625, 935]
gap> Length(last);
16
gap> List([3..20], n -> Length(AllSmoothIntegers([5,11,17], 10^n)));
[16, 29, 50, 78, 114, 155, 212, 282, 359, 452, 565, 691, 831, 992, 1173,

1374, 1595, 1843]

4.1.2 AllProducts

. AllProducts(L, k) (function)

This function has been transferred from package RCWA.
The command AllProducts(L,k) returns the list of all products of k entries of the list L . Note

that every ordering of the entries is used so that, in the commuting case, there are bound to be repeti-
tions.

13

utils 14

Example

gap> AllProducts([1..4],3);
[1, 2, 3, 4, 2, 4, 6, 8, 3, 6, 9, 12, 4, 8, 12, 16, 2, 4, 6, 8, 4, 8, 12,

16, 6, 12, 18, 24, 8, 16, 24, 32, 3, 6, 9, 12, 6, 12, 18, 24, 9, 18, 27,
36, 12, 24, 36, 48, 4, 8, 12, 16, 8, 16, 24, 32, 12, 24, 36, 48, 16, 32,
48, 64]

gap> Set(last);
[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 64]
gap> AllProducts([(1,2,3),(2,3,4)], 2);
[(2,4,3), (1,2)(3,4), (1,3)(2,4), (1,3,2)]

4.1.3 RestrictedPartitionsWithoutRepetitions

. RestrictedPartitionsWithoutRepetitions(n, S) (function)

This function has been transferred from package RCWA.
For a positive integer n and a set of positive integers S , this function returns the list of partitions

of n into distinct elements of S . Unlike RestrictedPartitions, no repetitions are allowed.
Example

gap> RestrictedPartitions(20, [4..10]);
[[4, 4, 4, 4, 4], [5, 5, 5, 5], [6, 5, 5, 4], [6, 6, 4, 4],

[7, 5, 4, 4], [7, 7, 6], [8, 4, 4, 4], [8, 6, 6], [8, 7, 5],
[8, 8, 4], [9, 6, 5], [9, 7, 4], [10, 5, 5], [10, 6, 4],
[10, 10]]

gap> RestrictedPartitionsWithoutRepetitions(20, [4..10]);
[[10, 6, 4], [9, 7, 4], [9, 6, 5], [8, 7, 5]]
gap> RestrictedPartitionsWithoutRepetitions(10^2, List([1..10], n->n^2));
[[100], [64, 36], [49, 25, 16, 9, 1]]

4.1.4 NextProbablyPrimeInt

. NextProbablyPrimeInt(n) (function)

This function has been transferred from package RCWA.
The function NextProbablyPrimeInt(n) does the same as NextPrimeInt(n) except that

for reasons of performance it tests numbers only for IsProbablyPrimeInt(n) instead of
IsPrimeInt(n). For large n , this function is much faster than NextPrimeInt(n)

Example

gap> n := 2^251;
3618502788666131106986593281521497120414687020801267626233049500247285301248
gap> NextProbablyPrimeInt(n);
3618502788666131106986593281521497120414687020801267626233049500247285301313
gap> time;
1
gap> NextPrimeInt(n);

utils 15

3618502788666131106986593281521497120414687020801267626233049500247285301313
gap> time;
213

4.1.5 PrimeNumbersIterator

. PrimeNumbersIterator([chunksize]) (function)

This function has been transferred from package RCWA.
This function returns an iterator which runs over the prime numbers n ascending order; it takes an

optional argument chunksize which specifies the length of the interval which is sieved in one go (the
default is 107), and which can be used to balance runtime vs. memory consumption. It is assumed that
chunksize is larger than any gap between two consecutive primes within the range one intends to run
the iterator over.

Example

gap> iter := PrimeNumbersIterator();;
gap> for i in [1..100] do p := NextIterator(iter); od;
gap> p;
541
gap> sum := 0;;
gap> ## "prime number race" 1 vs. 3 mod 4
gap> for p in PrimeNumbersIterator() do
> if p <> 2 then sum := sum + E(4)^(p-1); fi;
> if sum > 0 then break; fi;
> od;
gap> p;
26861

Chapter 5

Groups and homomorphisms

5.1 Functions for groups

5.1.1 Comm

. Comm(L) (operation)

This method has been transferred from package ResClasses.
It provides a method for Comm when the argument is a list (enclosed in square brackets), and calls

the function LeftNormedComm.
Example

gap> Comm([(1,2), (2,3)]);
(1,2,3)
gap> Comm([(1,2),(2,3),(3,4),(4,5),(5,6)]);
(1,5,6)
gap> Comm(Comm(Comm(Comm((1,2),(2,3)),(3,4)),(4,5)),(5,6)); ## the same
(1,5,6)

5.1.2 IsCommuting

. IsCommuting(a, b) (operation)

This function has been transferred from package ResClasses.
It tests whether two elements in a group commute.

Example

gap> D12 := DihedralGroup(12);
<pc group of size 12 with 3 generators>
gap> SetName(D12, "D12");
gap> a := D12.1;; b := D12.2;;
gap> IsCommuting(a, b);
false

16

utils 17

5.1.3 ListOfPowers

. ListOfPowers(g, exp) (operation)

This function has been transferred from package RCWA.
The operation ListOfPowers(g,exp) returns the list [g,g2, ...,gexp] of powers of the element g.

Example

gap> ListOfPowers(2, 20);
[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, 131072, 262144, 524288, 1048576]

gap> ListOfPowers((1,2,3)(4,5), 12);
[(1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), (),
(1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), ()]

gap> ListOfPowers(D12.2, 6);
[f2, f3, f2*f3, f3^2, f2*f3^2, <identity> of ...]

5.1.4 GeneratorsAndInverses

. GeneratorsAndInverses(G) (operation)

This function has been transferred from package RCWA.
This operation returns a list containing the generators of G followed by the inverses of these

generators.
Example

gap> GeneratorsAndInverses(D12);
[f1, f2, f3, f1, f2*f3^2, f3^2]
gap> GeneratorsAndInverses(SymmetricGroup(5));
[(1,2,3,4,5), (1,2), (1,5,4,3,2), (1,2)]

5.1.5 UpperFittingSeries

. UpperFittingSeries(G) (attribute)

. LowerFittingSeries(G) (attribute)

. FittingLength(G) (attribute)

These three functions have been transferred from package ResClasses.
The upper and lower Fitting series and the Fitting length of a solvable group are described here:

https://en.wikipedia.org/wiki/Fitting_length.
Example

gap> UpperFittingSeries(D12); LowerFittingSeries(D12);
[Group([]), Group([f3, f2*f3]), Group([f1, f3, f2*f3])]
[D12, Group([f3]), Group([])]
gap> FittingLength(D12);
2

https://en.wikipedia.org/wiki/Fitting_length

utils 18

gap> S4 := SymmetricGroup(4);;
gap> UpperFittingSeries(S4);
[Group(()), Group([(1,2)(3,4), (1,4)(2,3)]), Group([(1,2)(3,4), (1,4)

(2,3), (2,4,3)]), Group([(3,4), (2,3,4), (1,2)(3,4)])]
gap> List(last, StructureDescription);
["1", "C2 x C2", "A4", "S4"]
gap> LowerFittingSeries(S4);
[Sym([1 .. 4]), Alt([1 .. 4]), Group([(1,4)(2,3), (1,3)
(2,4)]), Group(())]

gap> List(last, StructureDescription);
["S4", "A4", "C2 x C2", "1"]
gap> FittingLength(S4);
3

5.2 Left Cosets for Groups

5.2.1 LeftCoset

. LeftCoset(g, U) (operation)

Since GAP uses right actions by default, the library contains the operation RightCoset(U,g) for
constructing the right coset Ug of a subgroup U ≤ G and an element g ∈ G. It has been noted in the
reference manual that, by inverting all the elements in Ug, the left coset g−1U is obtained.

Just for the sake of completeness, from August 2022 this package provides the operation
LeftCoset(g,U) for constructing the left coset gU . Users are strongly recommended to continue
to use RightCoset for all serious calculations, since left cosets have a much simpler implementation
and do not behave exactly like right cosets.

The methods for left cosets which are provided generally work by converting gU to Ug−1; apply-
ing the equivalent method for right cosets; and, if necessary, converting back again to left cosets.

G acts on gU by OnLeftInverse: (gU)g0 = g−1
0 ∗ (gU) = (g−1

0 g)U .
Example

gap> lc1 := LeftCoset((1,2,3), Group([(1,2), (3,4)]));
LeftCoset((1,2,3),Group([(1,2), (3,4)]))
gap> Representative(lc1);
(1,2,3)
gap> ActingDomain(lc1);
Group([(1,2), (3,4)])
gap> AsSet(lc1);
[(2,3), (2,4,3), (1,2,3), (1,2,4,3)]
gap> (1,2,3) in lc1;
true
gap> lc2 := (2,4,3) * lc1;
LeftCoset((1,2,4),Group([(1,2), (3,4)]))
gap> lc3 := lc1^(2,3,4);;
gap> lc2 = lc3;
true

utils 19

5.2.2 Inverse

The inverse of the left coset gU is the right coset Ug−1, and conversely. This is an abuse of the attribute
Inverse, since the standard requirement, that x∗ x−1 is an identity, does not hold.

Example

gap> rc1 := Inverse(lc1);
RightCoset(Group([(1,2), (3,4)]),(1,3,2))
gap> rc4 := RightCoset(Group((1,2), (2,3)), (3,4));
RightCoset(Group([(1,2), (2,3)]),(3,4))
gap> lc4 := Inverse(rc4);
LeftCoset((3,4),Group([(1,2), (2,3)]))
gap> Intersection(lc2, lc4);
[(2,3,4), (1,2,3,4)]

5.3 Functions for group homomorphisms

5.3.1 EpimorphismByGenerators

. EpimorphismByGenerators(G, H) (operation)

This function has been transferred from package RCWA.
It constructs a group homomorphism which maps the generators of G to those of H. Its intended

use is when G is a free group, and a warning is printed when this is not the case. Note that anything
may happen if the resulting map is not a homomorphism!

Example

gap> G := Group((1,2,3), (3,4,5), (5,6,7), (7,8,9));;
gap> phi := EpimorphismByGenerators(FreeGroup("a","b","c","d"), G);
[a, b, c, d] -> [(1,2,3), (3,4,5), (5,6,7), (7,8,9)]
gap> PreImagesRepresentative(phi, (1,2,3,4,5,6,7,8,9));
d*c*b*a
gap> a := G.1;; b := G.2;; c := G.3;; d := G.4;;
gap> d*c*b*a;
(1,2,3,4,5,6,7,8,9)
gap> ## note that it is easy to produce nonsense:
gap> epi := EpimorphismByGenerators(Group((1,2,3)), Group((8,9)));
Warning: calling GroupHomomorphismByImagesNC without checks
[(1,2,3)] -> [(8,9)]
gap> IsGroupHomomorphism(epi);
true
gap> Image(epi, (1,2,3));
()
gap> Image(epi, (1,3,2));
(8,9)

utils 20

5.3.2 Pullback

. Pullback(hom1, hom2) (operation)

. PullbackInfo(G) (attribute)

If φ1 : G1→ H and φ2 : G2→ H are two group homomorphisms with the same range, then their
pullback is the subgroup of G1×G2 consisting of those elements (g1,g2) such that φ1g1 = φ2g2.

The attribute PullbackInfo of a pullback group P is similar to DirectProductInfo for a direct
product of groups. Its value is a record with the following components:

directProduct
the direct product G1×G2, and

projections
a list with the two projections onto G1 and G2.

There are no embeddings in this record, but it is possible to use the embeddings into the direct product,
see Embedding (Reference: Embedding).

Example

gap> s4 := Group((1,2),(2,3),(3,4));;
gap> s3 := Group((5,6),(6,7));;
gap> c3 := Subgroup(s3, [(5,6,7)]);;
gap> f := GroupHomomorphismByImages(s4, s3,
> [(1,2),(2,3),(3,4)], [(5,6),(6,7),(5,6)]);;
gap> i := GroupHomomorphismByImages(c3, s3, [(5,6,7)], [(5,6,7)]);;
gap> Pfi := Pullback(f, i);
Group([(2,3,4)(5,7,6), (1,2)(3,4)])
gap> StructureDescription(Pfi);
"A4"
gap> info := PullbackInfo(Pfi);
rec(directProduct := Group([(1,2), (2,3), (3,4), (5,6,7)]),

projections := [[(2,3,4)(5,7,6), (1,2)(3,4)] -> [(2,3,4), (1,2)(3,4)],
[(2,3,4)(5,7,6), (1,2)(3,4)] -> [(5,7,6), ()]])

gap> g := (1,2,3)(5,6,7);;
gap> ImageElm(info!.projections[1], g);
(1,2,3)
gap> ImageElm(info!.projections[2], g);
(5,6,7)
gap> dp := info!.directProduct;;
gap> a := ImageElm(Embedding(dp, 1), (1,4,3));;
gap> b := ImageElm(Embedding(dp, 2), (5,7,6));;
gap> a*b in Pfi;
true

5.3.3 CentralProduct

. CentralProduct(G1, G2, Z1, Phi) (operation)

. CentralProductInfo(G) (attribute)

utils 21

This function was added by Thomas Breuer, following discussions with Hongyi Zhao (see
https://github.com/gap-packages/hap/issues/73).

Let G1 and G2 be two groups, Z1 be a central subgroup of G1 , and Phi be an isomorphism from
Z1 to a central subgroup of G2 . The central product defined by these arguments is the factor group of
the direct product of G1 and G2 by the central subgroup {(z,(Phi(z))−1) : z ∈ Z1}.

The attribute CentralProductInfo of a group G that has been created by CentralProduct
is similar to PullbackInfo (5.3.2) for pullback groups. Its value is a record with the following
components.

projection
the epimorphism from the direct product of G1 and G2 to G, and

phi the map Phi .

Note that one can access the direct product as the Source (Reference: Source) value of the
projection map, and one can access G1 and G2 as the two embeddings of this direct product, see
Embedding (Reference: Embedding).

Example
gap> g1 := DihedralGroup(8);
<pc group of size 8 with 3 generators>
gap> c1 := Centre(g1);
Group([f3])
gap> cp1 := CentralProduct(g1, g1, c1, IdentityMapping(c1));
Group([f1, f2, f5, f3, f4, f5])
gap> IdGroup(cp1) = IdGroup(ExtraspecialGroup(2^5, "+"));
true
gap> g2 := QuaternionGroup(8);
<pc group of size 8 with 3 generators>
gap> c2 := Centre(g2);
Group([y2])
gap> cp2 := CentralProduct(g2, g2, c2, IdentityMapping(c2));
Group([f1, f2, f5, f3, f4, f5])
gap> IdGroup(cp2) = IdGroup(ExtraspecialGroup(2^5, "+"));
true
gap> info2 := CentralProductInfo(cp2);
rec(phi := IdentityMapping(Group([y2])),

projection := [f1, f2, f3, f4, f5, f6] -> [f1, f2, f5, f3, f4, f5])
gap> Source(Embedding(Source(info2.projection), 1)) = g2;
true

5.3.4 IdempotentEndomorphisms

. IdempotentEndomorphisms(G) (operation)

. IdempotentEndomorphismsData(G) (attribute)

. IdempotentEndomorphismsWithImage(genG, R) (operation)

An endomorphism f : G→ G is idempotent if f 2 = f . It has an image R 6 G; is the identity map
when restricted to R; and has a kernel N which has trivial intersection with R and has size |G|/|R|.

The operation IdempotentEndomorphismsWithImage(genG,R) returns a list of the images of
the generating set genG of a group G under the idempotent endomorphisms with image R.

https://github.com/gap-packages/hap/issues/73

utils 22

The attribute IdempotentEndomorphismsData(G) returns a record data with fields data.gens,
a fixed generating set for G, and data.images a list of the non-empty outputs of
IdempotentEndomorphismsWithImage(genG,R) obtained by iterating over all subgroups of G.

The operation IdempotentEndomorphisms(G) returns the list of these mappings obtained using
IdempotentEndomorphismsData(G). The first of these is the zero map, the second is the identity.

Example

gap> gens := [(1,2,3,4), (1,2)(3,4)];;
gap> d8 := Group(gens);;
gap> SetName(d8, "d8");
gap> c2 := Subgroup(d8, [(2,4)]);;
gap> IdempotentEndomorphismsWithImage(gens, c2);
[[(), (2,4)], [(2,4), ()]]
gap> IdempotentEndomorphismsData(d8);
rec(gens := [(1,2,3,4), (1,2)(3,4)],

images := [[[(), ()]], [[(), (2,4)], [(2,4), ()]],
[[(), (1,3)], [(1,3), ()]],
[[(), (1,2)(3,4)], [(1,2)(3,4), (1,2)(3,4)]],
[[(), (1,4)(2,3)], [(1,4)(2,3), (1,4)(2,3)]],
[[(1,2,3,4), (1,2)(3,4)]]])

gap> List(last.images, L -> Length(L));
[1, 2, 2, 2, 2, 1]
gap> IdempotentEndomorphisms(d8);
[[(1,2,3,4), (1,2)(3,4)] -> [(), ()],

[(1,2,3,4), (1,2)(3,4)] -> [(), (2,4)],
[(1,2,3,4), (1,2)(3,4)] -> [(2,4), ()],
[(1,2,3,4), (1,2)(3,4)] -> [(), (1,3)],
[(1,2,3,4), (1,2)(3,4)] -> [(1,3), ()],
[(1,2,3,4), (1,2)(3,4)] -> [(), (1,2)(3,4)],
[(1,2,3,4), (1,2)(3,4)] -> [(1,2)(3,4), (1,2)(3,4)],
[(1,2,3,4), (1,2)(3,4)] -> [(), (1,4)(2,3)],
[(1,2,3,4), (1,2)(3,4)] -> [(1,4)(2,3), (1,4)(2,3)],
[(1,2,3,4), (1,2)(3,4)] -> [(1,2,3,4), (1,2)(3,4)]]

The quaternion group q8 is an example of a group with a tail: there is only one subgroup in the
lattice which covers the identity subgroup. The only idempotent isomorphisms of such groups are
the identity mapping and the zero mapping because the only pairs N,R are the whole group and the
identity subgroup.

Example

gap> q8 := QuaternionGroup(8);;
gap> IdempotentEndomorphisms(q8);
[[x, y] -> [<identity> of ..., <identity> of ...], [x, y] -> [x, y]]

5.3.5 DirectProductOfFunctions

. DirectProductOfFunctions(G, H, f1, f2) (operation)

utils 23

Given group homomorphisms f1 : G1 → G2 and f2 : H1 → H2, this operation return the product
homomorphism f1× f2 : G1×G2→ H1×H2.

Example

gap> c4 := Group((1,2,3,4));;
gap> c2 := Group((5,6));;
gap> f1 := GroupHomomorphismByImages(c4, c2, [(1,2,3,4)], [(5,6)]);;
gap> c3 := Group((1,2,3));;
gap> c6 := Group((1,2,3,4,5,6));;
gap> f2 := GroupHomomorphismByImages(c3, c6, [(1,2,3)], [(1,3,5)(2,4,6)]);;
gap> c4c3 := DirectProduct(c4, c3);
Group([(1,2,3,4), (5,6,7)])
gap> c2c6 := DirectProduct(c2, c6);
Group([(1,2), (3,4,5,6,7,8)])
gap> f := DirectProductOfFunctions(c4c3, c2c6, f1, f2);
[(1,2,3,4), (5,6,7)] -> [(1,2), (3,5,7)(4,6,8)]
gap> ImageElm(f, (1,4,3,2)(5,7,6));
(1,2)(3,7,5)(4,8,6)

5.3.6 DirectProductOfAutomorphismGroups

. DirectProductOfAutomorphismGroups(A1, A2) (operation)

Let A1,A2 be groups of automorphism of groups G1,G2 respectively. The output of this function
is a group A1×A2 of automorphisms of G1×G2.

Example

gap> c9 := Group((1,2,3,4,5,6,7,8,9));;
gap> ac9 := AutomorphismGroup(c9);;
gap> q8 := QuaternionGroup(IsPermGroup, 8);;
gap> aq8 := AutomorphismGroup(q8);;
gap> A := DirectProductOfAutomorphismGroups(ac9, aq8);
<group with 5 generators>
gap> genA := GeneratorsOfGroup(A);;
gap> G := Source(genA[1]);
Group([(1,2,3,4,5,6,7,8,9), (10,14,12,16)(11,17,13,15), (10,11,12,13)
(14,15,16,17)])
gap> a := genA[1]*genA[5];
[(1,2,3,4,5,6,7,8,9), (10,14,12,16)(11,17,13,15), (10,11,12,13)(14,15,16,17)
] -> [(1,3,5,7,9,2,4,6,8), (10,16,12,14)(11,15,13,17),
(10,11,12,13)(14,15,16,17)]

gap> ImageElm(a, (1,9,8,7,6,5,4,3,2)(10,14,12,16)(11,17,13,15));
(1,8,6,4,2,9,7,5,3)(10,16,12,14)(11,15,13,17)

Chapter 6

Iterators

6.1 Some iterators for groups and their isomorphisms

The motivation for adding these operations is partly to give a simple example of an iterator for a list
that does not yet exist, and need not be created.

6.1.1 AllIsomorphismsIterator

. AllIsomorphismsIterator(G, H) (operation)

. AllIsomorphismsNumber(G, H) (operation)

. AllIsomorphisms(G, H) (operation)

The main GAP library contains functions producing complete lists of group homomorphisms
such as AllHomomorphisms; AllEndomorphisms and AllAutomorphisms. Here we add the missing
AllIsomorphisms(G,H) for a list of isomorphisms from G to H. The method is simple – find one
isomorphism G→ H and compose this with all the automorphisms of G. In all these cases it may
not be desirable to construct a list of homomorphisms, but just implement an iterator, and that is what
is done here. The operation AllIsomorphismsNumber returns the number of isomorphisms iterated
over (this is, of course, just the order of the automorphisms group). The operation AllIsomorphisms
produces the list or isomorphisms.

Example

gap> G := SmallGroup(6,1);;
gap> iter := AllIsomorphismsIterator(G, s3);;
gap> NextIterator(iter);
[f1, f2] -> [(6,7), (5,6,7)]
gap> n := AllIsomorphismsNumber(G, s3);
6
gap> AllIsomorphisms(G, s3);
[[f1, f2] -> [(6,7), (5,6,7)], [f1, f2] -> [(5,7), (5,6,7)],

[f1, f2] -> [(5,6), (5,7,6)], [f1, f2] -> [(6,7), (5,7,6)],
[f1, f2] -> [(5,7), (5,7,6)], [f1, f2] -> [(5,6), (5,6,7)]]

gap> iter := AllIsomorphismsIterator(G, s3);;
gap> for h in iter do Print(ImageElm(h, G.1) = (6,7), ", "); od;
true, false, false, true, false, false,

24

utils 25

6.1.2 AllSubgroupsIterator

. AllSubgroupsIterator(G) (operation)

The manual entry for the operation AllSubgroups states that it is only intended to be used
on small examples in a classroom situation. Access to all subgroups was required by the XMod
package, so this iterator was introduced here. It used the operations LatticeSubgroups(G) and
ConjugacyClassesSubgroups(lat), and then iterates over the entries in these classes.

Example

gap> c3c3 := Group((1,2,3), (4,5,6));;
gap> iter := AllSubgroupsIterator(c3c3);
<iterator>
gap> while not IsDoneIterator(iter) do Print(NextIterator(iter),"\n"); od;
Group(())
Group([(4,5,6)])
Group([(1,2,3)])
Group([(1,2,3)(4,5,6)])
Group([(1,3,2)(4,5,6)])
Group([(4,5,6), (1,2,3)])

6.2 Operations on iterators

This section considers ways of producing an iterator from one or more iterators. It may be that opera-
tions equivalent to these are available elsewhere in the library – if so, the ones here can be removed in
due course.

6.2.1 CartesianIterator

. CartesianIterator(iter1, iter2) (operation)

This iterator returns all pairs [x,y] where x is the output of a first iterator and y is the output of a
second iterator.

Example

gap> it1 := Iterator([1, 2, 3]);;
gap> it2 := Iterator([4, 5, 6]);;
gap> iter := CartesianIterator(it1, it2);;
gap> while not IsDoneIterator(iter) do Print(NextIterator(iter),"\n"); od;
[1, 4]
[1, 5]
[1, 6]
[2, 4]
[2, 5]
[2, 6]
[3, 4]
[3, 5]
[3, 6]

utils 26

6.2.2 UnorderedPairsIterator

. UnorderedPairsIterator(iter) (operation)

This operation returns pairs [x,y] where x,y are output from a given iterator iter. Unlike the out-
put from CartesianIterator(iter,iter), unordered pairs are returned. In the case L= [1,2,3, . . .]
the pairs are ordered as [1,1], [1,2], [2,2], [1,3], [2,3], [3,3],

Example

gap> L := [6,7,8,9];;
gap> iterL := IteratorList(L);;
gap> pairsL := UnorderedPairsIterator(iterL);;
gap> while not IsDoneIterator(pairsL) do Print(NextIterator(pairsL),"\n"); od;
[6, 6]
[6, 7]
[7, 7]
[6, 8]
[7, 8]
[8, 8]
[6, 9]
[7, 9]
[8, 9]
[9, 9]
gap> iter4 := IteratorList([4]);
<iterator>
gap> pairs4 := UnorderedPairsIterator(iter4);
<iterator>
gap> NextIterator(pairs4);
[4, 4]
gap> IsDoneIterator(pairs4);
true

Chapter 7

Records

7.1 Functions for records

7.1.1 AssignGlobals

. AssignGlobals(rec) (function)

This function has been transferred from package RCWA.
It assigns the record components of rec to global variables with the same names.

Example

gap> r := rec(a := 1, b := 2, c := 3);;
gap> AssignGlobals(r);
The following global variables have been assigned:
["a", "b", "c"]
gap> [a,b,c];
[1, 2, 3]

27

Chapter 8

Various other functions

8.1 File operations

8.1.1 Log2HTML

. Log2HTML(filename) (function)

This function has been transferred from package RCWA.
This function converts the GAP logfile filename to HTML. It appears that the logfile should be

in your current directory. The extension of the input file must be *.log. The name of the output file
is the same as the one of the input file except that the extension *.log is replaced by *.html. There
is a sample CSS file in utils/doc/gaplog.css, which you can adjust to your taste.

Example

gap> LogTo("triv.log");
gap> a := 33^5;
39135393
gap> LogTo();
gap> Log2HTML("triv.log");

8.2 LATEX strings

8.2.1 IntOrOnfinityToLaTeX

. IntOrOnfinityToLaTeX(n) (function)

This function has been transferred from package ResClasses.
IntOrInfinityToLaTeX(n) returns the LATEX string for n .

Example

gap> IntOrInfinityToLaTeX(10^3);
"1000"
gap> IntOrInfinityToLaTeX(infinity);
"\\infty"

28

utils 29

8.2.2 LaTeXStringFactorsInt

. LaTeXStringFactorsInt(n) (function)

This function has been transferred from package RCWA.
It returns the prime factorization of the integer n as a string in LATEX format.

Example

gap> LaTeXStringFactorsInt(Factorial(12));
"2^{10} \\cdot 3^5 \\cdot 5^2 \\cdot 7 \\cdot 11"

8.3 Conversion to Magma string

8.3.1 ConvertToMagmaInputString

. ConvertToMagmaInputString(arg) (function)

The function ConvertToMagmaInputString(obj [, str]) attempts to output a string s
which can be read into Magma [BCP97] so as to produce the same group in that computer al-
gebra system. In the second form the user specifies the name of the resulting object, so that
the output string has the form "str := ...". When obj is a permutation group, the operation
PermGroupToMagmaFormat(obj) is called. This function has been taken from other.gi in the
main library where it was called MagmaInputString. When obj is a pc-group, the operation
PcGroupToMagmaFormat(obj) is called. This function was private code of Max Horn. When obj is
a matrix group over a finite field, the operation MatrixGroupToMagmaFormat(obj) is called. This
function is a modification of private code of Frank Lübeck.

Hopefully code for other types of group will be added in due course.
These functions should be considered experimental, and more testing is desirable.

Example

gap> ConvertToMagmaInputString(Group((1,2,3,4,5), (3,4,5)));
"PermutationGroup<5|(1,2,3,4,5),\n(3,4,5)>;\n"
gap> ConvertToMagmaInputString(Group((1,2,3,4,5)), "c5");
"c5:=PermutationGroup<5|(1,2,3,4,5)>;\n"
gap> ConvertToMagmaInputString(DihedralGroup(IsPcGroup, 10));
"PolycyclicGroup< f1,f2 |\nf1^2,\nf2^5,\nf2^f1 = f2^4\n>;\n"
gap> M := GL(2,5);; Size(M);
480
gap> s1 := ConvertToMagmaInputString(M);
"F := GF(5);\nP := GL(2,F);\ngens := [\nP![2,0,0,1],\nP![4,1,4,0]\n];\nsub<P |\
gens>;\n"

gap> Print(s1);
F := GF(5);
P := GL(2,F);
gens := [
P![2,0,0,1],
P![4,1,4,0]
];

utils 30

sub<P | gens>;
gap> n1 := [[Z(9)^0, Z(9)^0], [Z(9)^0, Z(9)]];;
gap> n2 := [[Z(9)^0, Z(9)^3], [Z(9)^4, Z(9)^2]];;
gap> N := Group(n1, n2);; Size(N);
5760
gap> s2 := ConvertToMagmaInputString(N, "gpN");;
gap> Print(s2);
F := GF(3^2);
P := GL(2,F);
w := PrimitiveElement(F);
gens := [
P![1, 1, 1,w^1],
P![1,w^3, 2,w^2]
];
gpN := sub<P | gens>;

Chapter 9

Obsolete functions

9.1 Operations from AutoDoc

The file functions FindMatchingFiles and CreateDirIfMissing were copied
from package AutoDoc where they are named AutoDoc_FindMatchingFiles and
AutoDoc_CreateDirIfMissing.

The string function StringDotSuffix was also copied from package AutoDoc, where it is named
AUTODOC_GetSuffix.

The function SetIfMissing was also transferred from package AutoDoc, where it is called
AUTODOC_SetIfMissing. It writes into a record provided the position is not yet bound.

As from version 0.61, all these functions became obsolete in Utils, but continue to be defined in
AutoDoc.

9.2 Functions for printing

The function PrintOneItemPerLine was used to prints lists vertically, rather than horizontally. Since
a very similar result may be achieved using the GAP library functions Perform and Display, this
function became obsolete in version 0.61.

Example

gap> s3 := SymmetricGroup(3);;
gap> L := KnownPropertiesOfObject(GeneratorsOfGroup(s3));;
gap> Perform(L, Display);
IsFinite
IsSmallList
IsGeneratorsOfMagmaWithInverses
IsGeneratorsOfSemigroup
IsSubsetLocallyFiniteGroup
gap> Perform(s3, Display);
()
(2,3)
(1,3)
(1,3,2)
(1,2,3)
(1,2)

31

utils 32

9.3 Other obsolete functions

9.3.1 Applicable Methods

The function PrintApplicableMethod, which was included in versions from 0.41 to 0.58, has been
removed since it was considered superfluous. The example shows how to print out a function.

Example

gap> ApplicableMethod(IsCyclic, [Group((1,2,3),(4,5))], 1, 1);
#I Searching Method for IsCyclic with 1 arguments:
#I Total: 7 entries
#I Method 4: ‘‘IsCyclic’’ at /Applications/gap/gap4r9/lib/grp.gi:30 , value:
36
function(G) ... end
gap> Print(last);
function (G)

if Length(GeneratorsOfGroup(G)) = 1 then
return true;

else
TryNextMethod();

fi;
return;

end
gap> ApplicableMethod(IsCyclic, [Group((1,2,3),(4,5))], 0, 3);
function(<1 unnamed arguments>) ... end
gap> Print(last);
function (<<arg-1>>)

<<compiled GAP code from GAPROOT/lib/oper1.g:578>>
end

9.3.2 ExponentOfPrime

The function ExponentOfPrime was originally transferred from package RCWA. The command
ExponentOfPrime(n,p) returned the exponent of the prime p in the prime factorization of n .

Since the GAP function PValuation produces the same results, and does so more quickly, this
function has been made obsolete.

Chapter 10

The transfer procedure

We consider here the process for transferring utility functions from a package Home to Utils which
has to avoid the potential problem of duplicate declarations of a function causing loading problems in
GAP.

If the functions in Home all have names of the form HOME_FunctionName then, in Utils, these
functions are likely to be renamed as FunctionName or something similar. In this case the problem
of duplicate declarations does not arise. This is what has happened with transfers from the AutoDoc
package.

The case where the function names are unchanged is more complicated. Initially we tried out
a process which allowed repeated declarations and installations of the functions being transferred.
This involved additions to the main library files global.g and oper.g. Since there were misgivings
about interfering in this way with basic operations such as BIND_GLOBAL, a simpler (but slightly less
convenient) process has been adopted.

Using this alternative procedure, the following steps will be followed when making transfers from
Home to Utils.

1. (Home:) Offer functions for inclusion. This may be simply done by emailing a list of func-
tions. More usefully, email the declaration, implementation, test and documentation files, e.g.:
home.gd, home.gi, home.tst and home.xml. (All active authors should be involved.)

2. (Home:) Declare that M.N is the last version of Home to contain these functions, so that M.N+1
(or similar) will be the first version of Home to have all these functions removed, and to specify
Utils as a required package.

3. (Utils:) Add strings "home" and "m.n" to the list UtilsPackageVersions in the file
utils/lib/start.gd.

Example

UtilsPackageVersions :=
["autodoc", "2016.01.31",

"resclasses", "4.2.5",
"home", "m.n",
..., ...

];

33

utils 34

While the transfers are being made, it is essential that any new versions of Home should be
tested with the latest version of Utils before they are released, so as to avoid loading failures.

4. (Utils:) Include the function declaration and implementation sections in suitable files, enclosed
within a conditional clause of the form:

Example

if OKtoReadFromUtils("Home") then
.
<the code>

.
fi;

The function OKtoReadFromUtils returns true only if there is an installed version of Home
and if this version is greater than M.N. So, at this stage, the copied code will not be read, and
the transferred functions can only be called if Home has been installed.

5. (Utils:) Add the test and documentation material to the appropriate files. The copied code can
be tested by temporarily moving Home away from GAP’s package directory.

6. (Utils:) Release a new version of Utils containing all the transferred material.

7. (Home:) Edit out the declarations and implementations of all the transferred functions, and
remove references to them in the manual and tests. Possibly add a note to the manual that
these functions have been transferred. Add Utils to the list of Home’s required packages in
PackageInfo.g. Release a new version of Home.

8. (Utils:) In due course, when the new version(s) of Home are well established, it may be
safe to remove the conditional clauses mentioned in item 4 above. The entry for Home in
UtilsPackageLists may then be removed.

Finally, a note on the procedure for testing these functions. As long as a function being transferred
still exists in the Home package, the code will not be read from Utils. So, when the tests are run, it is
necessary to LoadPackage("home") before the function is called. The file utils/tst/testall.g
makes sure that all the necessary packages are loaded before the individual tests are called.

References

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. {I}. The
user language, 1997. Computational algebra and number theory (London, 1993)}
https://doi.org/10.1006/jsco.1996.0125. 29

[GH16] S. Gutsche and M. Horn. AutoDoc - Generate documentation from GAP source code
(Version 2016.12.04), 2016. GAP package, https://github.com/gap-packages/
AutoDoc. 2, 5

[Hor17] M. Horn. GitHubPagesForGAP - Template for easily using GitHub Pages within GAP
packages (Version 0.2), 2017. GAP package, https://gap-system.github.io/
GitHubPagesForGAP/. 2

[Koh17a] S. Kohl. RCWA - Residue-Class-Wise Affine Groups (Version 4.5.1), 2017. GAP package,
https://stefan-kohl.github.io/rcwa.html. 5

[Koh17b] S. Kohl. ResClasses - Set-Theoretic Computations with Residue Classes (Version 4.6.0),
2017. GAP package, https://stefan-kohl.github.io/resclasses.html. 5

[LN17] F. Lübeck and M. Neunhöffer. GAPDoc (Version 1.6). RWTH Aachen, 2017. GAP pack-
age, https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html.
2

[WAOU17] C. D. Wensley, M. Alp, A. Odabas, and E. O. Uslu. XMod - Crossed Modules and
Cat1-groups in GAP (Version 2.64), 2017. GAP package, https://github.com/
gap-packages/xmod. 5

35

https://doi.org/10.1006/jsco.1996.0125
https://github.com/gap-packages/AutoDoc
https://github.com/gap-packages/AutoDoc
https://gap-system.github.io/GitHubPagesForGAP/
https://gap-system.github.io/GitHubPagesForGAP/
https://stefan-kohl.github.io/rcwa.html
https://stefan-kohl.github.io/resclasses.html
https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html
https://github.com/gap-packages/xmod
https://github.com/gap-packages/xmod

Index

AllIsomorphisms, 24
AllIsomorphismsIterator, 24
AllIsomorphismsNumber, 24
AllProducts, 13
AllSmoothIntegers, 13
AllSubgroupsIterator, 25
AssignGlobals, 27

BlankFreeString, 12

CartesianIterator, 25
CentralProduct, 20
CentralProductInfo, 20
Comm, 16
CommonRepresentatives, 11
CommonTransversal, 11
ConvertToMagmaInputString, 29
CreateDirIfMissing, 31

DifferencesList, 9
DirectProductOfAutomorphismGroups, 23
DirectProductOfFunctions, 22
distinct and common representatives, 11
DistinctRepresentatives, 11

EpimorphismByGenerators, 19
ExponentOfPrime, 32

FindMatchingFiles, 31
Fitting series, 17
FittingLength, 17
FloatQuotientsList, 9

GeneratorsAndInverses, 17
GetSuffix, 31
GitHub repository, 5

IdempotentEndomorphisms, 21
IdempotentEndomorphismsData, 21
IdempotentEndomorphismsWithImage, 21
IntOrOnfinityToLaTeX, 28

IsCommonTransversal, 11
IsCommuting, 16
Iterators, 24

LaTeXStringFactorsInt, 29
LeftCoset, 18
ListOfPowers, 17
Log2HTML, 28
LowerFittingSeries, 17

MatrixGroupToMagmaFormat, 29

NextProbablyPrimeInt, 14

OKtoReadFromUtils, 34

PcGroupToMagmaFormat, 29
PermGroupToMagmaFormat, 29
PrimeNumbersIterator, 15
PrintApplicableMethod, 32
PrintOneItemPerLine, 31
PrintSelection, 7
Pullback, 20
PullbackInfo, 20

QuotientsList, 9

RandomCombination, 11
RestrictedPartitionsWithout-

Repetitions, 14

SearchCycle, 10
SetIfMissing, 31
smooth integer, 13
StringDotSuffix, 31

UnorderedPairsIterator, 26
UpperFittingSeries, 17

36

	Introduction
	Information for package authors

	Printing Lists and Iterators
	Printing selected items

	Lists, Sets and Strings
	Functions for lists
	Distinct and Common Representatives
	Functions for strings

	Number-theoretic functions
	Functions for integers

	Groups and homomorphisms
	Functions for groups
	Left Cosets for Groups
	Functions for group homomorphisms

	Iterators
	Some iterators for groups and their isomorphisms
	Operations on iterators

	Records
	Functions for records

	Various other functions
	File operations
	LaTeX strings
	Conversion to Magma string

	Obsolete functions
	Operations from AutoDoc
	Functions for printing
	Other obsolete functions

	The transfer procedure
	References
	Index

